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Robustness of scale invariance in models with self-organized criticality
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A random-neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of
states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is
exactly calculable. The system is critical only at a special p&inih coupling parameter space. However, the
critical region around this point, where approximate scale invariance holds, is very large, suggesting a mecha-
nism for explaining the ubiquity of power laws in natuf81063-651X99)06105-X]

PACS numbdps): 05.40—a, 05.70.Ln, 05.65:b, 91.30.Bi

. INTRODUCTION nism for the emergence of very large but finitén a non-
negligible region of the parameter space. In other words,
Self-organized criticalitf SOQ is an intriguing concept although true criticality occurs only at a special poilt,

which started a large “avalanche” of research on mechathere exists a large region where power laws over several
nisms leading to scale invariance in extended dynamical sysiecades appear. In this region the behavior of the system can
tems[1]. However, there is no general agreement about inbe considered almost critical.
gredients necessary to create the self-organized critical state. This occurs because the original parameter which controls
This fact is reflected in the doubts about whether locallythe critical behavior(the branching rater in a branching
dissipative systems really present SOC or have only a verprocessis now, in SOC models, a slow dynamical variable

strong divergence of the mean avalanche sizshen ap- ¢t(J) that depends on the coupling parameferin our
proaching the conservative limit. The recent results by ChaModel, the stationary value..(J) shows a plateau near the
banol and Hakim[2], Broker and Grassbergdi3], and critical value oc=1, _thus enlarg!r?g the region 1 space
Kinouchi et al. [4] stating that the random-neighbor Olami, where the syste_m d_ls_,plays a critical behavior. We will say
Feder, and Christensef©FC) model is not critical in the that the system is critical faf=J, wheno =1 and is "qua-

NN X - . . sicritical” or “almost critical” for values of J whereo~1.
dissipative regime and contradicting previous clajfisis a : . -
e . .~ . This fact may be relevant as an explanation for the ubiquity
clear example of the difficulty of making such a distinction

el the basis of simulati It is al h of approximate scale invariance in nat(iég.
Solely on the basis of simulations. 1t 1S also WOrth Temeém- e remainder of the paper is organized as follows: In

bering that the prototypical sandpil®TW) model is not  gac |1 the model is introduced and the main results ob-

critical in the presence of local dissipatiph6,7. ﬁained. The issue of robustness in SOC models is discussed
The distinction between conservative and dissipative locay, gec. 111, Section IV contains concluding remarks and sug-

dynamics, however, is not what is relevant for predictinggastions for future work.

critical behavior. The decisive ingredient seems to be th

value of the coupling parametér[or the nature of the dis-

tribution p(J) in nonhomogeneous system&or example, Il. EXTREMAL FEDER AND FEDER MODEL
the Feder and Feder model witmeighbors is nonconserva- (EFF MODEL )

tive but is critical when the coupling constant is equal to

J.=1k [3,8]. A. The model

In this paper, a model is proposed which is similar to, but - The EFF model is a random-neighbor version of the Feder
simpler than, the random-neighbor stick-slip models studieénd Feder moddB,8] using an extremal dynamics similar to
in [2,3] For this model, the Stationﬂy distribution of statesthe Bak-Sneppen modmo:l The extremal dynamicsy which
p-.(E) and the mean avalanche sigeas functions of the in this case substitutes fdgand plays the same role)athe
coupling parameted, have simple analytical formén the  slow driving of the original Feder and Feder model, is here
limit of infinite system sizg The analysis in terms of an essential ingredient for the observation of self-organized
branching processes is transparent and gives a clear mechaiticality.

All sites j=1,... N have a continuous state variable

EjeR. At each time step the site with maximal value
*Electronic address: osame@dfm.ffclrp.usp.br “fires,” resetting its value to zero plus a noise tesm Then,
"Electronic address: prado@if.usp.br k random “neighbors” ¢n) of the firing site have their
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states incremented by a constanplus a noise term. The

choice of neighbors is done at the firing instant: the random- 5 &%
ness isannealed So, denoting the extremal value at instant
asE =maxE;}, the update rules are

O N=10000
Theory

Ef (t+1)=n(t),

(1)
Ern(t+1)=Egn(t) +J+ nrn(l), 5r

with 7 and nry being random variables uniformly distrib- =
uted in the interval0,e] (the range ofe will be discussed
laten. Note that each random neighbor receives a different
quantity 7gy - 1k
Consider the instantaneous density of stgigg). It is
clear that for anyE outside the interval$,=[(n—1)J,(n
—1)J+ne], n=1,2,...,this density decays to zero for 0
long times. These intervals effectively discretize the phase T T
space, so it is useful to define the following quantities: 0.0 0.2 0.4 0.6 0.8 1.0

E

(n—=1)J+ne
Pn= f(n_l)J P(E)dE, 2) FIG. 1. Distribution of statep..(E) for k=4, J=0.235, ande
=0.05: theoretical(solid) and simulation(circle§ with N=10*

with Nn=1,2, ... Npax, and e<J/Ng., SO that the intervals sites.
do not overlapthe integem,,,, will be obtained later The
process can be thought of as a transference of sites betweglil]) situated at the intervdl, ., =[kJ,kJ+ (k+1)e]. The
the intervalsl ,. At each time step, one site is transferred toother intervalsn>k+1 haveP, of yet smaller order(see
the intervall ; and, with probabilityk P,, one site is removed Fig. 1).
from this interval. The average flux to the intervajswith
n>1 corresponds to the probabilikP,_; that a neighbor is B. Avalanches
chosen in the previouk,_; interval minus the probability
kP, that a neighbor is chosen in the interval The average
number of sites in each interval ¢, (t) =NP,(t). For long
times, that is, when the density of states outsidel thater-
vals goes to zero, one can write

An avalanche will be defined as the number of firing sites
until an extremal site value falls below the threshd&g,
=1 [13]. Note that the first site of an avalanctike “seed”)
always hasE<<1 but it counts as a firing site. So, if a seed
produces no suprathreshold sitésdescendantsy, this
counts as an avalanche of size one. This definition of ava-

1
P(t+ 1)=P1(t)+N[l—kP1(t)], lanches agrees with that used in the studies of relaxation
oscillator models.
1 3 In these random-neighbor models, an avalanche can be
P (t+1)=P.(t)+ —TkP. -(t)—KkP.(t)]. identified as a branching process where an active site pro-
n(tFD=Po(+ GLKPa-1(0) (V] ducesk new sites, each one having a probabiitpf being

_ _ ~active(a "branch”) and a probability - p of being inactive
Here, each time step is equal to the update of the maximah “leaf” ). The branching rate-=kp measures the probabil-

site andk random neighbors. ity that a firing site produces another firing site.
The condition for steady stateB,(t+1)=P,(t)=P}, A known result for a process with a constant branching
gives rate o is the distribution of avalanche sizg3],
Pf=l/k, 5 B 1 ks o ks—(s—1) o s—1 6
(4) (9=5ls-1 K K - ©
P* — *
n n—1»
which, for larges and small6=1— ¢, has the form
that is, P} = 1/k for all n. But sincep(E) is normalized, only
Nmax iNtervals withP,, of O(1) can exist. That is, 1
P(s)~ ————5 32exp(—s/s,), (7)
o 1 ( 21— 1K) R=sls
nzl Pa :nmaxXE:]-v 5
2(k—1) s
- . . S¢~ (1-0) " (8)
giving thatn,,,,=k. This means thap..(E) is composed ok k

bumps 6=1, ... hh=k and the previous condition for
producing nonoverlapping intervals readse<<J/k. Thereis ~ We will see that Eq(6) can be applied to the EFF model
also a bump ofo(In N/N) (by analogy with the results from with the stationary valuer.(J).
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Now, consider an avalanche which has terminated after  In our model, the calculation gi..(E) is very simple. In
sites have fired. This avalanche is composed of one seed afite stationary state, a site pertaining to tith bump has
s—1 descendants. But the average number of descendardsergyE=(n—1)J+z,, wherez, is the sum ofn random
produced bys firing sites isos. Thus, on average, the rela- variables uniformly distributed in the intervigd,e]. The dis-
tion tribution p(z,) may be calculated from

s—1l=0s (9) P(z1)=€10(21)0(e~2y),

must hold, which leads to

P(Zns1)= f wdzn dz; p(zn)p(21) 8(zn+ 21— 241 1)-

_ 1 -
S= 1T (10)
7 For thek=4 case,
Of course, this result can be obtained directly from . s
after some work. Note that..=o(t— ) refers to the sta- P(22) =€ “2,0(2)O(e—2;)
tionary valge of the branching rate: during the tr_ansiemt, +(2e—2,)0(2,— €)O(2e—12,), (14)
changes with the avalanche timeAlthough questioned by
some author$6], we retain the nameelf-organizationfor 2
this evolution ofo; toward o, mainly as a label to distin- (23):(3_3@(23)(9(6_23)
guish these systems from standard branching processes 2
whereo is fixed a priori. 32
+| —Z5+3ez5— 7)@(23— €)0(2e—1z3)
C. The J=1k case
. o 2 2
In the casel= 1/, the calculation obr., is trivial. Thekth 23 € _ _
bump (1= N4y, Which starts atk—1)J, must lie below the T| 5 T8€zat —57|0(25726)0(3e~24),

thresholdE;,=1 (if not, the system is supercritigalThen, e
must satisfy the conditionk(— 1)/k+ke<1, that is, 23
2))=€ *—0(2,)0(e—z
< 112, (11) p(z4) 6 (24)O( 4)
Zf{ 2

For the standardk=4 neighbor case this reads<0.0625. _ —+2ez§—25224+ i

This condition also implies that neighbors pertaining to the 2 3

other bumps do not contribute te,, that is, cannot fire

when receiving a maximal contributiaht e. Now, since all X0(2,—€)0(2e-2y)

the neighbors pertaining to theh bump receive at least the ( X3 263
+

+

quantity J=1/k, they are always transformed into active —§+26x2—262x+7
sites. Thus, the average number of descendants of a firing

site is X0O(z,—2€)O(3e—24)

3

1 X
aw:kP;‘:kxE:l, (12 +€®(Z4—36)®(46—Z4), (15

which corresponds to a critical branching process. It iswith the shorthand=(4e—z,). The distributionp..(E) has
known that in this case the system presents an infmjsee  k bumps. Each bumgabeled byn) starts atE,=(n—1)J,

Eq. (10)] and, for larges, a pure power law being proportional tg(z,) (the constant of proportionality
is just 1Kk). In Fig. 1, the distributionp,.(E) is compared
P(S) 1 3 13 with simulation results for a system with “Gsites, J
§)=——'5§ - - i
2m(1-1k) 0.235, = 0.05, and a sufficient number of avalanches.

for the distribution of avalanche sizg3)].

D. Results for generalJ

For such large systems, we must be careful about using
reliable random-neighbor generators. In order to speed up the
search for the extremal site, we used the binary rooted tree
algorithm described by Grassberd#&?]. For example, if the
system has 2 sites, a binary tree witm+ 1 levels is created

For the casel<1/k, in order to obtain an expression for such that, in each node at levels stored the largest value of
0(J), the knowledge of the distribution of statps(E) is  E of the two branch nodes of thé- 1)th level. So, the Oth
required. But it is clear that ikJ=1—§ then inevitably (root) level contains the value of the extremal site. Ascend-

o..<1 (even for very smalls>0), since some sites pertain- ing the tree, we locate the position of this site in the upper
ing to thekth bump may not receive a sufficient contribution level. After the extremal site firing, the tree must be updated.
to make them activgsee Eq.(17) below]. Thus, any value The same occurs when the random neighbors are updated.
J<J.=1Kk is subcritical. This is a common feature of many These operations have a complex@{In N) instead of the

models with SOJ3,6,14.

O(N) complexity of the naive search mechanism.
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FIG. 2. Mean avalanche size as a function of parametel
Theoretical(solid) and simulations withN up to 2'8=262 144 sites
for noisy EFF model(circles with €=0.05 and noiseless EFF
model(triangles with e=0.2. Thesee values are chosen such that
the last interval (,) has the same length in both models.

The stationary branching rate, is calculated as follows.
All the sites that can be activated pertain to #th bump.
When hit, sites witlE>1—J are always activated. In terms
of the rescaled variable,=E— (k—1)J, this condition re-
fers to sites withz,>é6=1—kJ. They contribute to the
branching rate with the quantity’,

| p—

g =

1 o6+J
kLin(E)dE= L p(z)dz, (16

wherez=z,.

Sites withE<1—J— € cannot be activated and do not
contribute too. Sites with 1-J—e<E<1-J can be acti-
vated if they receive a quantity+ »>1—E, that is, > 6
—z. This occurs with probability P(n>6—-2)=1—(§5
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FIG. 3. Simulation resultsN=213=8192 sitesk=4,e=0.05)
for the distributionP(s) with J=0.21,0.22,0.23,0.236rom left to
right), compared with theoretical curvésolid).

very well with Eq. (6) if o=0.(J) is used in that expres-
sion. Strong finite size effects, however, are present when
>0.235.

For 6<e, that is,J.—J<elk, the form assumed by, is
particularly simple, smcep(z) Ce *Z*" ! in that interval
(C is a numerical constantThen,

C f{s 1 5 - C S k+1
ekl o’ (6-2)dz= k(k+1)\e/
(19

O=1—

the avalanche cutoff length.
Sinceé=1—-kJ=k(J.—J), we obtain, from Eqs(8) and
(10), the avalanche cutoff size and the average avalanche

—2)/e. Thus, these sites contribute to the branching rate wnﬁ'ze

the quantity

o=

1kJ
k
1-kJ—€

B
= p(z)

S5—€

P(E)P(5>1—-E—J)dE

dz

6—z
1__
€

17

The total branching rate is then

o.=0' +d"
o—¢ S(o 116
=1—f p(z)dz——f p(z)dz+—f zp(z)dz,
0 €Js-e €)s-e

(18)

where we used the fact thif 'p(z)dz=1. Sincep(z) has
a simple piecewise polynomial forfisee Eq.(14)] the cal-

culation ofs is straightforward and the result is presented in

Fig. 2 along with simulation results for tHe=4, €=0.05,
for systems with up tdN=2'8=262 144 sites. In Fig. 3, we
plot simulation results for th@(s) distribution which agree

2(k—1)(k+1)%e2ktD

Se= C2K2k+1 (Je= )™,
(20
— (k+1)e? o
s= T(JC_J) :
with the critical exponent
v=2(k+1). (21

For example, wittk=4 [which mean<=1/6, see Eq(14)]
and e=0.05, the mean avalanche sizesis 120 already for

J=0.2375. Curiously, this behavior is similar to tEe&(JC
—J) X divergence found in the standard random-neighbor
FF model[3].

E. The EFF model with noiseless couplings

It is instructive to compare the above behavior with that
of a simpler EFF moddH] where the firing rule is the same,
Ef (t+1)=7ne[0,e], but the coupling between sites is
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noiselesskE,,(t+1)=E,,(t)+J. Thus, p..(E) assumes the — 1 T 1 T 1 T T

form of k rectangular bumps wittp(z,) =€ 10(z,) 0O (e

—2z,). In this noiselessEFF model, the branching rate, the 1.0 |
a)/

cutoff size, and the average avalanche size are

0 foré>e
o=
* - b
1-6le for0<s<e, 0 LY i
62 9
S§=2(k—1)E(JC—J) , (22
0.8} -
— €
S=E(JC—J)’1. _C)

In contrast with the noisy model, large avalanches only occur
whenJ is very close tal; (see Fig. 2 Thus, the EFF model

with noiseless couplings does not present an enlargement of
the region where the system displays a critical behavior as J
observed in the noisy EFF model.

L 1/ P RS U
0.225 0.230 0.235 0.240 0.245 0.250

FIG. 4. (a) Generic self-organized criticality: the value of pa-
rametero, is critical on a finite range of the system parameker
11l. ON SOC DEFINITIONS (b) €=0.0625 and(c) €=0.05, enlargement of the critical region

) ) R ) ) (EFF model with noisy couplingk=4): o., is almost constant
The idea of self-organized criticality present in the litera-pearg_: (d) e=0.25=4%0.0625 and(e) e=0.2=4x0.05, stan-

ture embodies two distinct properties. The teeritical re-  gard critical behaviofEFF model with noiseless couplingshe
fers to the existence of power laws and to the absence of @upling parameted must be very close to 0.25 for obtainirag,

characteristic scale in the response of the system to the driv ¢ due to the linear behavior @f..(J). Note that, in the noiseless
ing mechanism of the dynamics; the tes@lf-organizede-  couplings casee refers to the amplitude of the noise received by
fers to the fact that there exists a parameter) ( which  the extremal site after discharge.
controls the avalanching process, whose value is not fixed
priori as, for example, in standard percolation and branchingegion of the parameter space, not only in a special point.
processes. This parameter evolves in time, during a transient Generic self-organized criticality is depicted in curfa
phase, toward a stationary value,. Indeed, this time de- of Fig. 4. In this case, there is a finite rangeJofalues for
pendence should be written ag=o(p,(E)), that is,oy isa  which ., assumes the critical value.=1. In this figure,
functional of the distribution of stateg,(E), that, in turn, curves(d) and (e) represent the behavior observed in the
evolves toward a statistically stationary distributipn(E). BTW model and also in the noiseless EFF model examined
S0, 0.,=0(p.(E)). If 0.=0,=1, the system is critical. above, for which the system is critical only for a special
The evolution ofp,(E) toward the steady stage.(E) is  value of the parametel. However, there is a third possibil-
akin to the transient relaxation in equilibrium systems: anyity. Curves(b) and(c) represent the behavior of(J) given
initial condition leads to the same stationary state, thus to thby Eq. (18) for the EFF model with noisy couplings: al-
same value otr,.. However, this robustness to initial con- though the system is critical only dt=J., the system is
ditions and external perturbations pQE) (“dynamical sta- “almost critical” over a large parameter region. This behav-
bility” ) should not be mistaken as parameter robustnes®r has also been observed in the standard random-neighbor
(“structural stability”). This is a distinct characteristic versions of FF and OFC mod€I8]. The importance of this
claimed to be present on some SOC modgskse, for in- characterization is that several models in the SOC literature,
stance[1,15,16,18). For a system to have “structural stable previously seen as having true generic criticality, are now
criticality,” there would be a finite parameter range for recognized as having only an almost critical behavior as dis-
which, after the transient, the system is critical. In this casecussed above.
o.(J)=0, for J belonging to some intervdld.,1k]. We A model which apparently presents generic SOC behavior
will call that kind of behaviorgeneric SOC in coupling space is the two-dimension@D) OFC model
“Structural stability” is a relative concept which depends [16,17,19. Also the standard Feder and Feder md@lis
on the parameter space physically available for the systentlaimed to be critical fod<<J. [18,19. Looking at the be-
For example, it is well known that the sandpile model is nothavior of the models studied so far, we make the following
critical in the presence of dissipation. The sandpile dissipaeonjecture: a necessary condition for a lattice model to
tion parameter corresponds to the quantityl—kJ in our  present a generic SOC behavior is that its corresponding
model [6,7]. The standard BTW model is by definition random-neighbor version already presents an enlarged criti-
“tuned” into a critical state through the “imposition” of a cal region in the sense discussed above. This could be tested
conservation law. Although it could be argued that dissipaby comparing the 2D versions of the EFF and noiseless EFF
tion is not a natural feature of sandpiles, since sand does natodels studied above.
disappear, the appearance of SOC in nature would sound In conclusion, we found that some systems that display
much more natural if criticality could be observed over aSOC, although being critical only for a single value fpare
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almost critical in a large region of the parameter space. Thitardly be noticed, and the model displays the typical features
almost critical behavior is difficult to distinguish, in practice, of generic SOC.

from true generic SOC behavior: both in numerical simula- In future work we hope to determine the minimal ingre-
tions (huge lattices would have to be ugehd in naturéddue  dients for producing the enlargement of the critical region in
to limitations in the datapower laws can only be measured the models examined in the SOC literature. We will also
over some scale decad@. So, in order to explain the ubig- Present results for the two-dimensional case and compare
uity of scale invariance in nature, having a true generic SO¢Vith the standard OFC and FF models. The simple mecha-

or only presenting an enlarged region where the system igis_m qlevised in this Work_ suggests that, if true g_eneric criti-
almost critical are, as far as one can measure, identical. C&llty iS not easy to obtain in the space of possible models,
this quasicritical behavior certainly is. Thus, for explaining

the robustness of approximate scale invariance in nature, this
mechanism seems to be more “generic” than generic criti-

A class of extremal stick-slip models has been introducedality.
and studied in thé&N—« limit. We showed that noise in the
couplings of the EFF model changes the exponent that con-
trols the amplitude of the critical region from=2 to v The authors thank P. Bak, S. R. A. Salinas, and Suani T.
=2(k+1). This enlargement of the region where the systenR. Pinho for helpful discussions, N. Dhar for remarks about
displays a critical behavior is similar to that found in the the SOC concept, and K. Christensen, R. Dickman, J. F.
standard random-neighbor OFC and FF modi2is4]. As in Fontanari, Nestor Caticha, D. Alves, and R. Vicente for com-
other models, the true critical state occurs only for one pointenting on the manuscript. O.K. thanks FAPESP for finan-
in parameter spade,3,6,7,14, but in practice that fact can cial support.

IV. CONCLUSIONS
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