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Robustness of scale invariance in models with self-organized criticality

Osame Kinouchi*
Departamento de Fı´sica e Matema´tica, Faculdade de Filosofia, Cieˆncias e Letras de Ribeira˜o Preto, Universidade de Sa˜o Paulo,

Avenida Bandeirantes 3900, CEP 14040-901, Ribeira˜o Preto, SP, Brazil

Carmen P. C. Prado†

Departamento de Fı´sica Geral, Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318,
CEP 05315-970, Sa˜o Paulo, SP, Brazil

~Received 5 October 1998!

A random-neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of
states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is
exactly calculable. The system is critical only at a special pointJc in coupling parameter space. However, the
critical region around this point, where approximate scale invariance holds, is very large, suggesting a mecha-
nism for explaining the ubiquity of power laws in nature.@S1063-651X~99!06105-X#
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I. INTRODUCTION

Self-organized criticality~SOC! is an intriguing concept
which started a large ‘‘avalanche’’ of research on mec
nisms leading to scale invariance in extended dynamical
tems@1#. However, there is no general agreement about
gredients necessary to create the self-organized critical s
This fact is reflected in the doubts about whether loca
dissipative systems really present SOC or have only a v

strong divergence of the mean avalanche sizes̄ when ap-
proaching the conservative limit. The recent results by C
banol and Hakim@2#, Bröker and Grassberger@3#, and
Kinouchi et al. @4# stating that the random-neighbor Olam
Feder, and Christensen~OFC! model is not critical in the
dissipative regime and contradicting previous claims@5# is a
clear example of the difficulty of making such a distinctio
solely on the basis of simulations. It is also worth reme
bering that the prototypical sandpile~BTW! model is not
critical in the presence of local dissipation@1,6,7#.

The distinction between conservative and dissipative lo
dynamics, however, is not what is relevant for predicti
critical behavior. The decisive ingredient seems to be
value of the coupling parameterJ @or the nature of the dis
tribution p(J) in nonhomogeneous systems#. For example,
the Feder and Feder model withk neighbors is nonconserva
tive but is critical when the coupling constant is equal
Jc51/k @3,8#.

In this paper, a model is proposed which is similar to, b
simpler than, the random-neighbor stick-slip models stud
in @2,3#. For this model, the stationary distribution of stat
p`(E) and the mean avalanche sizes̄, as functions of the
coupling parameterJ, have simple analytical forms~in the
limit of infinite system size!. The analysis in terms o
branching processes is transparent and gives a clear me
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nism for the emergence of very large but finites̄ in a non-
negligible region of the parameter space. In other wor
although true criticality occurs only at a special pointJc ,
there exists a large region where power laws over sev
decades appear. In this region the behavior of the system
be considered almost critical.

This occurs because the original parameter which cont
the critical behavior~the branching rates in a branching
process! is now, in SOC models, a slow dynamical variab
s t(J) that depends on the coupling parameterJ. In our
model, the stationary values`(J) shows a plateau near th
critical value sc51, thus enlarging the region inJ space
where the system displays a critical behavior. We will s
that the system is critical forJ5Jc whens51 and is ‘‘qua-
sicritical’’ or ‘‘almost critical’’ for values of J wheres;1.
This fact may be relevant as an explanation for the ubiqu
of approximate scale invariance in nature@9#.

The remainder of the paper is organized as follows:
Sec. II, the model is introduced and the main results
tained. The issue of robustness in SOC models is discu
in Sec. III. Section IV contains concluding remarks and su
gestions for future work.

II. EXTREMAL FEDER AND FEDER MODEL
„EFF MODEL …

A. The model

The EFF model is a random-neighbor version of the Fe
and Feder model@3,8# using an extremal dynamics similar t
the Bak-Sneppen model@10#. The extremal dynamics, which
in this case substitutes for~and plays the same role as! the
slow driving of the original Feder and Feder model, is he
an essential ingredient for the observation of self-organi
criticality.

All sites j 51, . . . ,N have a continuous state variab
EjPR. At each time step the site with maximal valu
‘‘fires,’’ resetting its value to zero plus a noise termh. Then,
k random ‘‘neighbors’’ (rn) of the firing site have their
4964 ©1999 The American Physical Society
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states incremented by a constantJ plus a noise term. The
choice of neighbors is done at the firing instant: the rando
ness isannealed. So, denoting the extremal value at instant
asEi* [max$Ej%, the update rules are

Ei* ~ t11!5h~ t !,
~1!

ERN~ t11!5ERN~ t !1J1hRN~ t !,

with h and hRN being random variables uniformly distrib
uted in the interval@0,e# ~the range ofe will be discussed
later!. Note that each random neighbor receives a differ
quantityhRN.

Consider the instantaneous density of statespt(E). It is
clear that for anyE outside the intervalsI n[@(n21)J,(n
21)J1ne#, n51,2, . . . , this density decays to zero fo
long times. These intervals effectively discretize the ph
space, so it is useful to define the following quantities:

Pn5E
~n21!J

~n21!J1ne
p~E!dE, ~2!

with n51,2, . . . ,nmax, and e,J/nmax so that the intervals
do not overlap~the integernmax will be obtained later!. The
process can be thought of as a transference of sites bet
the intervalsI n . At each time step, one site is transferred
the intervalI 1 and, with probabilitykP1, one site is removed
from this interval. The average flux to the intervalsI n with
n.1 corresponds to the probabilitykPn21 that a neighbor is
chosen in the previousI n21 interval minus the probability
kPn that a neighbor is chosen in the intervalI n . The average
number of sites in each interval isNn(t)5NPn(t). For long
times, that is, when the density of states outside theI n inter-
vals goes to zero, one can write

P1~ t11!5P1~ t !1
1

N
@12kP1~ t !#,

~3!

Pn~ t11!5Pn~ t !1
1

N
@kPn21~ t !2kPn~ t !#.

Here, each time step is equal to the update of the maxi
site andk random neighbors.

The condition for steady states,Pn(t11)5Pn(t)5Pn* ,
gives

P1* 51/k,
~4!

Pn* 5Pn21* ,

that is,Pn* 51/k for all n. But sincep(E) is normalized, only
nmax intervals withPn of O(1) can exist. That is,

(
n51

nmax

Pn* 5nmax3
1

k
51, ~5!

giving thatnmax5k. This means thatp`(E) is composed ofk
bumps (n51, . . . ,nmax5k) and the previous condition fo
producing nonoverlapping intervalsI n readse,J/k. There is
also a bump ofO(ln N/N) ~by analogy with the results from
-

t

e

en

al

@11#! situated at the intervalI k115@kJ,kJ1(k11)e#. The
other intervalsn.k11 havePn of yet smaller order~see
Fig. 1!.

B. Avalanches

An avalanche will be defined as the number of firing si
until an extremal site value falls below the thresholdEth
51 @13#. Note that the first site of an avalanche~the ‘‘seed’’!
always hasE,1 but it counts as a firing site. So, if a see
produces no suprathreshold sites~‘‘descendants’’!, this
counts as an avalanche of size one. This definition of a
lanches agrees with that used in the studies of relaxa
oscillator models.

In these random-neighbor models, an avalanche can
identified as a branching process where an active site
ducesk new sites, each one having a probabilityp of being
active~a ‘‘branch’’! and a probability 12p of being inactive
~a ‘‘leaf’’ !. The branching rates5kp measures the probabil
ity that a firing site produces another firing site.

A known result for a process with a constant branch
rates is the distribution of avalanche sizes@3#,

P~s!5
1

s S ks

s21D S 12
s

k D ks2~s21!S s

k D s21

, ~6!

which, for larges and smalld512s, has the form

P~s!'
1

A2p~121/k!
s23/2exp~2s/sj!, ~7!

sj'
2~k21!

k
~12s!22. ~8!

We will see that Eq.~6! can be applied to the EFF mode
with the stationary values`(J).

FIG. 1. Distribution of statesp`(E) for k54, J50.235, ande
50.05: theoretical~solid! and simulation~circles! with N5104

sites.
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Now, consider an avalanche which has terminated afts
sites have fired. This avalanche is composed of one seed
s21 descendants. But the average number of descend
produced bys firing sites isss. Thus, on average, the rela
tion

s̄215s s̄ ~9!

must hold, which leads to

s̄5
1

12s
. ~10!

Of course, this result can be obtained directly from Eq.~6!
after some work. Note thats`[s(t→`) refers to the sta-
tionary value of the branching rate: during the transient,s t
changes with the avalanche timet. Although questioned by
some authors@6#, we retain the nameself-organizationfor
this evolution ofs t toward s` mainly as a label to distin-
guish these systems from standard branching proce
wheres is fixed a priori.

C. The J51/k case

In the caseJ51/k, the calculation ofs` is trivial. Thekth
bump (n5nmax), which starts at (k21)J, must lie below the
thresholdEth51 ~if not, the system is supercritical!. Then,e
must satisfy the condition (k21)/k1ke,1, that is,

e,1/k2. ~11!

For the standardk54 neighbor case this readse,0.0625.
This condition also implies that neighbors pertaining to
other bumps do not contribute tos` , that is, cannot fire
when receiving a maximal contributionJ1e. Now, since all
the neighbors pertaining to thekth bump receive at least th
quantity J51/k, they are always transformed into activ
sites. Thus, the average number of descendants of a fi
site is

s`5kPk* 5k3
1

k
51, ~12!

which corresponds to a critical branching process. It
known that in this case the system presents an infinites̄ @see
Eq. ~10!# and, for larges, a pure power law

P~s!5
1

A2p~121/k!
s23/2 ~13!

for the distribution of avalanche sizes@3#.

D. Results for generalJ

For the caseJ,1/k, in order to obtain an expression fo
s`(J), the knowledge of the distribution of statesp`(E) is
required. But it is clear that ifkJ512d then inevitably
s`,1 ~even for very smalld.0), since some sites pertain
ing to thekth bump may not receive a sufficient contributio
to make them active@see Eq.~17! below#. Thus, any value
J,Jc51/k is subcritical. This is a common feature of man
models with SOC@3,6,14#.
nd
nts

es

e

ng

s

In our model, the calculation ofp`(E) is very simple. In
the stationary state, a site pertaining to thenth bump has
energyE5(n21)J1zn , wherezn is the sum ofn random
variables uniformly distributed in the interval@0,e#. The dis-
tribution p(zn) may be calculated from

p~z1!5e21Q~z1!Q~e2z1!,

p~zn11!5E
2`

`

dzn dz1 p~zn!p~z1!d~zn1z12zn11!.

For thek54 case,

p~z2!5e22 z2Q~z2!Q~e2z2!

1~2e2z2!Q~z22e!Q~2e2z2!, ~14!

p~z3!5e23
z3

2

2
Q~z3!Q~e2z3!

1S 2z3
213ez32

3e2

2 DQ~z32e!Q~2e2z3!

1S z3
2

2
23ez31

9e2

2 DQ~z322e!Q~3e2z3!,

p~z4!5e24
z4

3

6
Q~z4!Q~e2z4!

1S 2
z4

3

2
12ez4

222e2z41
2e3

3 D
3Q~z42e!Q~2e2z4!

1S 2
x3

3
12ex222e2x1

2e3

3 D
3Q~z422e!Q~3e2z4!

1
x3

6
Q~z423e!Q~4e2z4!, ~15!

with the shorthandx[(4e2z4). The distributionp`(E) has
k bumps. Each bump~labeled byn) starts atEn5(n21)J,
being proportional top(zn) ~the constant of proportionality
is just 1/k). In Fig. 1, the distributionp`(E) is compared
with simulation results for a system with 104 sites, J
50.235,e50.05, and a sufficient number of avalanches.

For such large systems, we must be careful about us
reliable random-neighbor generators. In order to speed up
search for the extremal site, we used the binary rooted
algorithm described by Grassberger@12#. For example, if the
system has 2m sites, a binary tree withm11 levels is created
such that, in each node at levell, is stored the largest value o
E of the two branch nodes of the (l 11)th level. So, the 0th
~root! level contains the value of the extremal site. Ascen
ing the tree, we locate the position of this site in the upp
level. After the extremal site firing, the tree must be updat
The same occurs when the random neighbors are upda
These operations have a complexityO(lnN) instead of the
O(N) complexity of the naive search mechanism.
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The stationary branching rates` is calculated as follows
All the sites that can be activated pertain to thekth bump.
When hit, sites withE.12J are always activated. In term
of the rescaled variablezk5E2(k21)J, this condition re-
fers to sites withzk.d[12kJ. They contribute to the
branching rate with the quantitys8,

s8[kE
12J

1

p~E!dE5E
d

d1J

p~z!dz, ~16!

wherez[zk .
Sites with E,12J2e cannot be activated and do n

contribute tos. Sites with 12J2e,E,12J can be acti-
vated if they receive a quantityJ1h.12E, that is,h.d
2z. This occurs with probability P(h.d2z)512(d
2z)/e. Thus, these sites contribute to the branching rate w
the quantity

s9[kE
12kJ2e

1kJ

P~E!P~h.12E2J!dE

5E
d2e

d
p~z! S 12

d2z

e Ddz. ~17!

The total branching rate is then

s`5s81s9

512E
0

d2e

p~z!dz2
d

eEd2e

d
p~z!dz1

1

eEd2e

d
zp~z!dz,

~18!

where we used the fact that*0
d1Jp(z)dz51. Sincep(z) has

a simple piecewise polynomial form@see Eq.~14!# the cal-
culation of s̄ is straightforward and the result is presented
Fig. 2 along with simulation results for thek54, e50.05,
for systems with up toN52185262 144 sites. In Fig. 3, we
plot simulation results for theP(s) distribution which agree

FIG. 2. Mean avalanche sizes̄ as a function of parameterJ.
Theoretical~solid! and simulations withN up to 2185262 144 sites
for noisy EFF model~circles! with e50.05 and noiseless EFF
model~triangles! with e50.2. Thesee values are chosen such th
the last interval (I 4) has the same length in both models.
h

very well with Eq. ~6! if s5s`(J) is used in that expres
sion. Strong finite size effects, however, are present wheJ
.0.235.

For d,e, that is,Jc2J,e/k, the form assumed bys` is
particularly simple, sincep(z)5Ce2kzk21 in that interval
(C is a numerical constant!. Then,

s`512
C

ek11E0

d
zk21~d2z!dz512

C

k~k11! S d

e D k11

,

~19!

the avalanche cutoff length.
Sinced[12kJ5k(Jc2J), we obtain, from Eqs.~8! and

~10!, the avalanche cutoff size and the average avalan
size

sj5
2~k21!~k11!2e2~k11!

C2k2k11
~Jc2J!2n,

~20!

s̄5
~k11!ek11

Ckk
~Jc2J!2n/2,

with the critical exponent

n52~k11!. ~21!

For example, withk54 @which meansC51/6, see Eq.~14!#

ande50.05, the mean avalanche size iss̄5120 already for
J50.2375. Curiously, this behavior is similar to thes̄}(Jc
2J)2k divergence found in the standard random-neigh
FF model@3#.

E. The EFF model with noiseless couplings

It is instructive to compare the above behavior with th
of a simpler EFF model@4# where the firing rule is the same
Ei* (t11)5hP@0,e#, but the coupling between sites

FIG. 3. Simulation results (N521358192 sites,k54,e50.05)
for the distributionP(s) with J50.21,0.22,0.23,0.235~from left to
right!, compared with theoretical curves~solid!.
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noiseless,Ern(t11)5Ern(t)1J. Thus,p`(E) assumes the
form of k rectangular bumps withp(zn)5e21Q(zn)Q(e
2zn). In this noiselessEFF model, the branching rate, th
cutoff size, and the average avalanche size are

s`5H 0 for d.e

12d/e for 0,d,e,

sj52~k21!
e2

k3
~Jc2J!22, ~22!

s̄5
e

k
~Jc2J!21.

In contrast with the noisy model, large avalanches only oc
whenJ is very close toJc ~see Fig. 2!. Thus, the EFF mode
with noiseless couplings does not present an enlargeme
the region where the system displays a critical behavio
observed in the noisy EFF model.

III. ON SOC DEFINITIONS

The idea of self-organized criticality present in the liter
ture embodies two distinct properties. The termcritical re-
fers to the existence of power laws and to the absence
characteristic scale in the response of the system to the
ing mechanism of the dynamics; the termself-organizedre-
fers to the fact that there exists a parameter (s t), which
controls the avalanching process, whose value is not fixea
priori as, for example, in standard percolation and branch
processes. This parameter evolves in time, during a trans
phase, toward a stationary values` . Indeed, this time de-
pendence should be written ass t5s„pt(E)…, that is,s t is a
functional of the distribution of statespt(E), that, in turn,
evolves toward a statistically stationary distributionp`(E).
So,s`[s„p`(E)…. If s`5sc51, the system is critical.

The evolution ofpt(E) toward the steady statep`(E) is
akin to the transient relaxation in equilibrium systems: a
initial condition leads to the same stationary state, thus to
same value ofs` . However, this robustness to initial con
ditions and external perturbations onp(E) ~‘‘dynamical sta-
bility’’ ! should not be mistaken as parameter robustn
~‘‘structural stability’’!. This is a distinct characteristi
claimed to be present on some SOC models~see, for in-
stance,@1,15,16,18#!. For a system to have ‘‘structural stab
criticality,’’ there would be a finite parameter range f
which, after the transient, the system is critical. In this ca
s`(J)5sc for J belonging to some interval@Jc,1/k#. We
will call that kind of behaviorgeneric SOC.

‘‘Structural stability’’ is a relative concept which depend
on the parameter space physically available for the syst
For example, it is well known that the sandpile model is n
critical in the presence of dissipation. The sandpile dissi
tion parameter corresponds to the quantityd512kJ in our
model @6,7#. The standard BTW model is by definitio
‘‘tuned’’ into a critical state through the ‘‘imposition’’ of a
conservation law. Although it could be argued that dissi
tion is not a natural feature of sandpiles, since sand does
disappear, the appearance of SOC in nature would so
much more natural if criticality could be observed over
r
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region of the parameter space, not only in a special poin
Generic self-organized criticality is depicted in curve~a!

of Fig. 4. In this case, there is a finite range ofJ values for
which s` assumes the critical valuesc51. In this figure,
curves ~d! and ~e! represent the behavior observed in t
BTW model and also in the noiseless EFF model exami
above, for which the system is critical only for a spec
value of the parameterJ. However, there is a third possibil
ity. Curves~b! and ~c! represent the behavior ofs(J) given
by Eq. ~18! for the EFF model with noisy couplings: a
though the system is critical only atJ5Jc , the system is
‘‘almost critical’’ over a large parameter region. This beha
ior has also been observed in the standard random-neig
versions of FF and OFC models@3#. The importance of this
characterization is that several models in the SOC literat
previously seen as having true generic criticality, are n
recognized as having only an almost critical behavior as
cussed above.

A model which apparently presents generic SOC beha
in coupling space is the two-dimensional~2D! OFC model
@16,17,19#. Also the standard Feder and Feder model@8# is
claimed to be critical forJ,Jc @18,19#. Looking at the be-
havior of the models studied so far, we make the followi
conjecture: a necessary condition for a lattice model
present a generic SOC behavior is that its correspond
random-neighbor version already presents an enlarged c
cal region in the sense discussed above. This could be te
by comparing the 2D versions of the EFF and noiseless E
models studied above.

In conclusion, we found that some systems that disp
SOC, although being critical only for a single value forJ, are

FIG. 4. ~a! Generic self-organized criticality: the value of pa
rameters` is critical on a finite range of the system parameterJ;
~b! e50.0625 and~c! e50.05, enlargement of the critical regio
~EFF model with noisy couplings,k54): s` is almost constant
near Jc ; ~d! e50.255430.0625 and~e! e50.25430.05, stan-
dard critical behavior~EFF model with noiseless couplings!: the
coupling parameterJ must be very close to 0.25 for obtainings`

'sc due to the linear behavior ofs`(J). Note that, in the noiseles
couplings case,e refers to the amplitude of the noise received
the extremal site after discharge.
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almost critical in a large region of the parameter space. T
almost critical behavior is difficult to distinguish, in practic
from true generic SOC behavior: both in numerical simu
tions~huge lattices would have to be used! and in nature~due
to limitations in the data! power laws can only be measure
over some scale decades@9#. So, in order to explain the ubiq
uity of scale invariance in nature, having a true generic S
or only presenting an enlarged region where the system
almost critical are, as far as one can measure, identical.

IV. CONCLUSIONS

A class of extremal stick-slip models has been introdu
and studied in theN→` limit. We showed that noise in the
couplings of the EFF model changes the exponent that c
trols the amplitude of the critical region fromn52 to n
52(k11). This enlargement of the region where the syst
displays a critical behavior is similar to that found in th
standard random-neighbor OFC and FF models@2–4#. As in
other models, the true critical state occurs only for one po
in parameter space@2,3,6,7,14#, but in practice that fact can
.

is

-

C
is

d

n-

t

hardly be noticed, and the model displays the typical featu
of generic SOC.

In future work we hope to determine the minimal ingr
dients for producing the enlargement of the critical region
the models examined in the SOC literature. We will al
present results for the two-dimensional case and comp
with the standard OFC and FF models. The simple mec
nism devised in this work suggests that, if true generic cr
cality is not easy to obtain in the space of possible mod
this quasicritical behavior certainly is. Thus, for explainin
the robustness of approximate scale invariance in nature,
mechanism seems to be more ‘‘generic’’ than generic cr
cality.
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